• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Danza y matemáticas… en Danza y matemáticas
    eformacionic en “LaLiga Santander Explic…
    Universidad Nacional… en Universidad Nacional de Costa…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a 129 seguidores más

«El problema de los soldados de Conway»: Un juego matemático imposible de ganar

El llamado «Problema de los Soldados de Conway» parece fácil, pero una vez que comenzamos a acumular movimientos, notamos que se trata de una batalla perdida.

John Horton Conway siempre será recordado por sus extraordinarios acertijos. Entre ellos, destacan el «Juego de la Vida de Conway», o el famoso «Problema del Ángel». También existe «Brotes», que diseñó junto a su colega Michael S. Paterson, y el «Algoritmo del Fin del Mundo.

Su «Problema de los Soldados» consiste en lo siguiente: un campo de batalla dividido en dos, y fraccionado en casillas como un tablero de damas o ajedrez. De un lado, hay un grupo de soldados que sólo pueden avanzar como las fichas en las damas, o sea, saltando sobre otra y capturándola, pero dicha captura se permite en vertical u horizontal, no en diagonal.

Es imposible llegar a la quinta fila dentro de territorio enemigo. Para llegar a la primera fila, apenas hacen falta dos soldados (un movimiento). Para la segunda fila, el número sube a cuatro (tres movimientos). La tercera fila requiere ocho soldados (siete movimientos), y la cuarta veinte (19 movimientos). 

Pero la quinta fila ya es matemáticamente imposible de alcanzar, excepto haciendo trampa. Si se doblan un poco las reglas para permitir a los soldados saltar en diagonal, el acceso se extiende hasta la octava fila, pero no a la novena. Con una cantidad finita de movimientos, el resultado nunca es satisfactorio. Simon Tatham y Gareth Taylor han demostrado que llegar a la quinta fila es posible con una cantidad infinita de movimientos.

Fuente y más información:

https://www.neoteo.com/el-problema-de-los-soldados-de-conway/

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: