• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Mando a distancia te… en Nuevo curso, nuevo sitio del…
    AmongNosotros en Se inspira en el juego ‘Among…
    Jorge en Se inspira en el juego ‘Among…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a 133 seguidores más

Matemáticas para predecir la propagación del coronavirus

El miedo por la aparición inesperada de enfermedades graves ha sido descrito reiteradamente a lo largo de la historia, y ha dejado una huella imborrable en el imaginario colectivo.

Actualmente, gracias al esfuerzo de profesionales de distintos campos es técnicamente posible organizar una respuesta sanitaria eficaz en un breve espacio de tiempo. Una de las herramientas para lograr este objetivo es la modelización matemática de los procesos contagiosos y en concreto, la formulación de indicadores fiables para evaluar su evolución temporal.

Este tipo de indicadores son fundamentales para valorar el desarrollo de epidemias como la del coronavirus.

Un punto de partida para estudiar la propagación de epidemias fue el llamado modelo SIR (iniciales de Susceptibles, Infectados y Recuperados) formulado en 1927 por Anderson Gray Mc Kendrick (1876-1943) y William Ogilvy Kermack (1898- 1970). Este modelo estudia una población en la que puede producirse una epidemia, dividida en tres grupos: 1) los individuos susceptibles de contraer la enfermedad, cuya población en el instante t representamos por S(t); 2) los infectados I(t) y 3) los recuperados R(t).

Utiliza un sistema de tres ecuaciones diferenciales. El estudio de este sistema de ecuaciones permitió identificar un parámetro que ha resultado de gran ayuda para estimar la incidencia de una epidemia. Ese parámetro, que suele representarse con la notación R0 , tiene un alto valor predictivo.

R0 se define exclusivamente a partir de las propiedades del proceso, y admite una interpretación muy intuitiva: es el número medio de casos secundarios originados por el contagio de una sola persona al comienzo de la enfermedad. Este criterio es de aplicación general, sea cual sea la naturaleza concreta del proceso considerado.

Los modelos matemáticos no bastan por sí solos para valorar el origen y extensión de una epidemia. La recogida fiable, y el tratamiento adecuado de datos es fundamental para extraer conclusiones correctas.

Fuente:

https://elpais.com/elpais/2020/02/04/ciencia/1580806149_218354.html

Así ayudaron las matemáticas a calcular la propagación de epidemias

1486386507_636571_1486387329_noticia_normal_recorte1

Durante siglos se desconocieron las causas biológicas y los mecanismos de propagación de las enfermedades contagiosas. Una aportación fundamental fue la del matemático Daniel Bernoulli (1700-1782), cuyo cumpleaños se celebraría ayer, 8 de febrero.

Formuló un modelo epidemiológico para la viruela. Para combatir esta enfermedad, desde principios del siglo XVIII se planteó en Europa la posibilidad de adoptar la inoculación como medida preventiva.

Bernoulli fue profesor de Anatomía y de Matemáticas en la Universidad de Basilea. Sus conocimientos médicos y matemáticos le permitieron proponer un modelo matemático para estimar la propagación de la viruela. Postuló las siguientes hipótesis epidemiológicas: la probabilidad de contraer la viruela (q) es la misma para cada persona; entre quienes enferman de viruela, la probabilidad de morir por su causa (p) es también independiente de la edad; quienes sufren la viruela y la superan, no vuelven a contraerla jamás.

Bernoulli logró una fórmula para describir la transmisión de la enfermedad en una población. Esta fórmula relaciona el número de personas con edad x susceptibles de ser infectadas (S(x)) con el número de personas vivas con esa edad (P(x)). La expresión a la que llegó fue: S(x) / P(x) = 1 / ((1 – p) e^qx + p).

Para calcular la tasa de contagio q, Bernoulli supuso que el número de muertes por viruela representaba 1/13 del total de fallecimientos. Usando las tablas de Halley, dedujo que cabía atribuir a la viruela unas 100 del total de 1300 muertes registradas en dichas tablas. Comparó los valores proporcionados por la fórmula que había obtenido, con p= 1/8 y diversos valores de q, con los datos de personas vivas proporcionados por las mismas tablas, y dedujo así que el mejor ajuste correspondía a q =1/8.

Dedujo que, si la viruela fuera inoculada sin consecuencias, la esperanza media de vida aumentaría unos tres años, aproximadamente el 10% del total, y afirmó que la probabilidad de muerte por inoculación era inferior al 0,5%.

Aunque la Academia de Ciencias de Paris publicó su trabajo en 1760, el método nunca fue adoptado de forma oficial. Pero  a principios del siglo XX resurgió la idea de modelizar matemáticamente la propagación de epidemias.

Leer más:

http://elpais.com/elpais/2017/02/06/ciencia/1486386507_636571.html

A %d blogueros les gusta esto: