• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Puri Montesinos en Los profesores sacan las matem…
    El IES Gonzalo de Be… en El IES Gonzalo de Berceo, de A…
    ​Estudiantes peruano… en ​Estudiantes peruanos ganan me…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a otros 110 seguidores

  • Anuncios

Euclides, el matemático más famoso de la historia

euclides-matematic-655x368

Si queremos saber cuál fue el matemático más famoso en la antigüedad, el más conocido de la historia de las matemáticas fue Euclides. No se conoce demasiado de su vida, pero si de su obra.

Su libro más famoso es un tratado de geometría denominada Los Elementos, donde su contenido se ha enseñado hasta el siglo XVIII cuando aparecieron las geometrías no euclídeas y del que todavía hay partes que siguen estando presente en pleno siglo XXI. HA tenido más de mil ediciones desde que se publicó por primera vez en imprenta a finales del siglo XV.

En ella recopiló ordenó y argumentó los conocimientos de carácter geométricos y matemáticos de su época, que de por sí ya eran bastantes.

Así se resumen los cinco postulados de Euclides:

I.- Dados dos puntos se pueden trazar una recta que los une.

Axioma I

II.- Cualquier segmento puede prolongarse de forma continua en una recta ilimitada en la misma dirección.

Axioma II

III.- Se puede trazar una circunferencia de centro en cualquier punto y radio.

Axioma III

IV.- Todos los ángulos rectos son iguales.

Axioma IV

V.- Si una recta, al cortar a otras dos, forma los ángulos internos de un mismo lado menores que dos rectos, esas dos rectas prolongadas indefinidamente se cortan del lado en el que están los ángulos menores que dos rectos.

Axioma V

Este axioma es conocido con el nombre de axioma de las paralelas y también se enunció más tarde así:

V-. Por un punto exterior a una recta se puede trazar una única paralela.

Fuente:

https://okdiario.com/curiosidades/2018/05/01/euclides-adelanto-tiempo-2205711

Anuncios

Otra geometría es posible

La geometría es la parte de la matemática que estudia las propiedades métricas de las figuras en el plano o en el espacio. Desde los tiempos de Euclides (siglo III a.C.) se habían estudiado las propiedades geométricas de las figuras planas y espaciales, dando por hecho que se encuentran contenidas en el espacio ambiente.

La observación hecha por Gauss en 1827 de que la geometría intrínseca de una superficie depende exclusivamente de la manera de medir en la superficie supuso un punto de inflexión. Su descubrimiento implicaba que sería posible imaginar una geometría, al menos en dimensión dos, sin necesidad de depender del espacio ambiente euclídeo. Su discípulo Riemann (1826-1866) lo demostró en su tesis de habilitación, presentada en la Universidad de Gotinga en 1854. Extendió a dimensiones establecidas la geometría que Gauss había desarrollado para superficies de dimensión dos y marcó el nacimiento de la geometría riemanniana.

Con la teoría de la relatividad de Einstein (1915) se consideró la posibilidad de métricas lorentzianas. Esta teoría se basa en que el universo se modela en términos de una variedad de dimensión cuatro, llamada espaciotiempo, en la que hay tres dimensiones espaciales y una dimensión temporal que interactúan entre sí.

Fuente:

http://www.laverdad.es/ababol/ciencia/geometria-posible-20171204004306-ntvo.html#

 

 

A %d blogueros les gusta esto: