• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Nahomi Lucero Azuara… en Nahomi Lucero Azuara, de Tamau…
    La Guía de Matemátic… en La Guía de Matemáticas cumple…
    Los Juegos Panameric… en Los Juegos Panamericanos, una…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a otros 114 seguidores

  • Anuncios

El problema más misterioso de las matemáticas recobra utilidad

La Hipótesis de Riemann es un instrumento para comprender uno de los mayores misterios de la teoría de los números: el patrón que subyace a los números primos.

El trabajo de Johan Jensen y George Pólya, dos de los matemáticos más importantes del siglo XX, revela un método para calcular los polinomios de Jensen-Pólya, una formulación de la Hipótesis de Riemann.

Un viejo enfoque del problema matemático recobra utilidad. Los coautores del artículo son Michael Griffin y Larry Rolen, que forman parte de la facultad de la Universidad Brigham Young y la Universidad de Vanderbilt, respectivamente, y Don Zagier del Instituto Max Matemático de Matemáticas.

La Hipótesis de Riemann es uno de los siete Problemas del Premio del Milenio, identificados por el Instituto de Matemáticas Clay como los problemas abiertos más importantes en matemáticas. Cada problema lleva una recompensa de un millón de dólares para los que lo resuelvan.

Riemann notó que la distribución de los números primos está muy relacionada con los ceros de una función analítica, que llegó a llamarse la función zeta de Riemann. En términos matemáticos, la Hipótesis de Riemann es la afirmación de que todos los ceros no triviales de la función zeta tienen 1/2 de parte real.

El primer número primo, 2, es el único par. El siguiente número primo es 3, pero los números primos no siguen un patrón de cada tercer número. El siguiente es 5, luego 7, luego 11. A medida que continúa contando hacia arriba, los números primos rápidamente se vuelven menos frecuentes.

En 1927, Jensen y Pólya formularon un criterio para confirmar la hipótesis de Riemann: como un paso hacia el desencadenamiento de su potencial para dilucidar los números primos y otros misterios matemáticos. El problema con el criterio es que es infinito.

Los últimos resultados no descartan la posibilidad de que la Hipótesis de Riemann sea falsa y los autores creen que una prueba completa de la conjetura aún queda lejos.

Fuente:

https://www.cope.es/actualidad/vivir/noticias/problema-matematico-mas-misterioso-las-matematicas-recobra-utilidad-20190522_419423

Anuncios

La hipótesis de Riemann, ¿solución a uno de los problemas matemáticos del milenio?

El matemático británico Michael Atiyah, de 89 años, presentó durante una conferencia dictada en un congreso en Heidelberg (Alemania) la que puede ser una posible solución a uno de los problemas más famosos de esta ciencia, la demostración de la reconocida hipótesis de Riemann.

La hipótesis tiene implicaciones para la comprensión de la distribución de los números primos.

Está entre los problemas del milenio, definidos en el año 2000 por el Clay Matematic Institut (CMI), que ofrece un premio de un millón de dólares por la solución de cada uno de ellos.

En la charla Atiyah repasó la historia de la confrontación de las matemáticas con los números primos, desde Euclides hasta Robert Langland y señalando que la hipótesis de Riemann era lo que ofrecía una mejor posibilidad de solución para encontrar una estructura en su distribución.

El matemático británico muestra que si hubiera un contraejemplo que refutase la hipótesis de Riemann, habría una contradicción en la función de Todd y a partir de ello concluye que Riemann tenía razón.

Las primeras respuestas estuvieron entre el entusiasmo y el desconcierto. Al final, un asistente a la conferencia preguntó a Atiyah si creía que estaba seguro de ganar el millón de dólares, a lo que respondió que sí, que estaba seguro. Ahora habrá que esperar la voz de los expertos. Sin embargo, en muchas redes sociales se percibe cierto grado de escepticismo por parte de matemáticos, para muchos la demostración resulta demasiado simple para ser correcta.

dn3wlvlxcaemmfz

Fuente:

https://www.elconfidencial.com/tecnologia/ciencia/2018-09-25/hipotesis-riemann-problema-matematico_1620812/

Nadie es capaz de resolver (aún) ‘los seis grandes problemas matemáticos del Milenio’

grandes-problemas-matematicos-milenio-resolverse_965014927_115749721_667x375

En 2000 el Instituto Clay de Matemáticas, con sede en Cambridge (Estados Unidos), impulsó una iniciativa para incrementar y difundir el conocimiento de las matemáticas en el mundo.

Para ello, un comité de expertos elaboró diversos retos. La lista de problemas presentados incluyó la representación de todas las grandes ramas de la matemática. Salvo un caso, todavía nadie ha sido capaz de desentrañar los acertijos restantes de esta ciencia.

Los7 problemas matemáticos del Milenio’ fueron elegidos por otro criterio: todos son fundamentales dentro del panorama de las matemáticas actuales.

Solo un problema ha sido descifrado: la denominada ‘Conjetura de Poincaré’, enunciada originalmente en 1904. Quien da nombre al problema sugería que, en un mundo de cuatro dimensiones, un espacio sin agujeros sería equivalente a una esfera.

El matemático ruso Grigori Perelman, tras un encierro de ocho años para estudiarlo, lo resolvió, pero rechazó el millón de dólares de los Clay y la medalla Fields, considerada el Nobel de las matemáticas.

En agosto pasado, el Congreso de la Unión Matemática Internacional, celebrado en Corea del Sur, galardonó a un profesor del Instituto Courant de Ciencias Matemáticas de Nueva York, llamado Subhash Khot,  de origen indio y que  dedicó mucho tiempo para intentar descifrar la teoría de la complejidad computacional (uno de los siete retos matemáticos del milenio). Sin embargo, no demostró el teorema existente al respecto, que lleva los nombres de los matemáticos Cook y Levin, sino que ofreció una nueva conjetura, motivo por el cual fue premiado por el jurado.

Otro de los grandes enigmas que siguen sin resolver es la denominada ‘conjetura de Birch y Swinnerton-Dyer’. El español Francesc Castellà, investigador de la Universidad de Princeton, se ha encarado con este gran desafío del milenio, buscando con obsesión la respuesta acertada y solución, pero áun no lo ha conseguido…

Los otros cuatro Grandes problemas matemáticos del Milenio aún sin resolver son ‘la conjetura de Hodge’ (todo ciclo es una combinación racional de ciclos algebraicos, es decir de los ciclos asociados a subvariedades analíticas cerradas); ‘la hipótesis de Riemann’ (sobre números primos), la ‘existencia en la Teoría de Yang-Mills’ (lo que se pide es un modelo matemático que satisfaga los axiomas de cierta Teoría Cuántica de Campos conocida como Teoría de Yang-Mills o Teoría gauge no-abeliana) y ‘las ecuaciones de Navier-Stokes’ (problema relacionado con la física, aunque es un problema de análisis y, más concretamente, de ecuaciones diferenciales).

Leer más:

http://www.lainformacion.com/interes-humano/Nadie-resolver-problemas-matematicos-Milenio_0_965004156.html

 

Enigmas matemáticos

La Unión Matemática Internacional por intermedio del Instituto Clay de Matemáticas de Cambridge (Massachusets), concede cada cuatro años un premio en metálico y la Medalla Fields Internacional para descubrimientos matemáticos muy destacados. El Instituto formuló en el año 2000 los siete enigmas matemáticos, con el objeto de ser resueltos.

Algunos se enunciaron hace cientos de años y requieren muchos años de investigación para lograr una respuesta acertada. Los resultados presentados por los investigadores son publicados para su incorporación.

Los siete enigmas son los siguientes:

1. Conjetura de Poincaré. “La superficie de una esfera, en cualquier número de dimensiones mayor que 2 puede contraerse hasta un único punto de forma continua”. Esta conjetura fue resuelta por el científico ruso Grigori Perelman, que no quiso recibir el premio.

2. Problema de P vs. NP. (Stephen Cook y Leonid Levin).- “Solucionar un problema lleva más tiempo que verificar una solución ya ofrecida. Donde P es difícil de encontrar y NP fácil de verificar”. Nadie ha podido comprobarlo con veracidad.

3. Ecuaciones de Navier-Stokes. Formuladas en 1822:
“Un conjunto de ecuaciones permite estudiar las turbulencias en los líquidos y en los gases, sin que exista una teoría matemática que las fundamente”. El reto consiste en encontrar tal fundamentación.

4. Hipótesis de Riemann. “La parte real de todo cero no trivial de su función equivale exactamente a ½”. Esta hipótesis basada en el estudio sobre los números primos no ha sido probada.

5. Conjetura de Hodge. El método de comprensión de los objetos geométricos de forma complicada consiste en reducir matemáticamente el propio objeto estudiado a un conjunto de subvariedades (variables) que puestas juntas una a otra forman un homólogo geométrico. La conjetura dice que ciertos grupos de esta cohomología son algebraicos y se resuelven como sumas de dualidades.

6. Teoría de Yang-Mills. Estos estudios influyeron en el avance de la teoría sobre la electrodinámica, la interacción nuclear fuerte,  la interacción débil y la teoría cuántica de campos. Hasta el momento no se ha probado que los cálculos algebraicos que llevaron a tal descubrimiento sean correctos.

7. Conjetura de Birch y Swinnerton-Dyer. Parte  de la descripción que hace Euclides de la elipse simple. Sus discípulos modernos intentaron modificar la solución simple mediante un coeficiente para describir figuras visualmente similares pero no lineales. Se busca la fórmula del coeficiente.

Leer más:

http://www.eldiario.com.co/seccion/OPINION/enigmas-matem-ticos1511.html

A %d blogueros les gusta esto: