• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Puri Montesinos en Los profesores sacan las matem…
    El IES Gonzalo de Be… en El IES Gonzalo de Berceo, de A…
    ​Estudiantes peruano… en ​Estudiantes peruanos ganan me…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a otros 109 seguidores

  • Anuncios

Solucionado un enigma matemático de 3.700 años

1503599508_412430_1503600204_noticia_normal_recorte1

El análisis de un texto babilónico escrito en barro hace más de 3.700 años puede haber resuelto uno de los enigmas más antiguos de las matemáticas.

Dos investigadores australianos han publicado los resultados de su estudio de Plimpton 322, una tablilla cuneiforme que del 1.800 antes de Cristo procedente de la antigua ciudad de Larsa, al sur de Iraq, que contiene series de números ordenados en quince filas y cuatro columnas. Podrían ser ternas pitagóricas, series de tres números que indican las longitudes de los tres lados de triángulos rectángulos.

El teorema matemático más famoso del mundo dice que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos en un triángulo rectángulo.  1.000 años antes de Pitágoras antes los babilonios ya conocían esta proposición matemática y la usaban frecuentemente.

La tablilla analizada es una especie de piedra Rosetta de las matemáticas de la antigua Babilonia. Situada entre los ríos Tigris y Éufrates, fue el centro de una revolución científica y cultural de la que se conservan cientos de miles de tablillas de barro usadas para contabilidad, matemáticas y astronomía.

El matemático Daniel Mansfield, de la Universidad de Nueva Gales del Sur (Australia) propone que los babilonios usaron estas tablas en arquitectura, por ejemplo para calcular dimensiones de rampas en pirámides, palacios y canales.

Fuente:

https://elpais.com/elpais/2017/08/24/ciencia/1503599508_412430.html?id_externo_rsoc=FB_CC

Anuncios

Las ecuaciones más bellas de la historia de las matemáticas

Muchos matemáticos pasaron a la historia porque son autores de las ecuaciones más famosas y reconocidas de la historia. Entre ellas destacan:

1. Pi

Describe cómo la circunferencia de un círculo varía según su diámetro, con una relación igual a un número denominado Pi que equivale aproximadamente a 3,14. Sirve para describir la geometría del mundo y hacer funcionar los GPS.

2. Teorema de Pitágoras

Su fórmula: el cuadrado de la hipotenusa es igual a la suma de los cuadrados de ambos catetos. Uno de los conceptos matemáticos más demostrados y de los pocos que todos conocemos y comprendemos.

3. Identidad de Euler

Reúne cinco de los números más utilizados: el 1, base de los demás números; el 0, el concepto de nada; pi, que define el círculo; e, subyacente al crecimiento exponencial, por ejemplo, el número imaginario que corresponde a la raíz cuadrada de -1.

Esos números tienen aplicaciones prácticas dentro de los campos de la comunicación, la energía, la navegación o la medicina. Contiene tres de las operaciones matemáticas más básicas: suma, multiplicación y exponenciación.

4. Fórmula de Riemann

Ideada por el matemático alemán Bernhard Riemann en 1859. Es un paso adelante en el esfuerzo de entender los números primos, los bloques básicos sobre los que se asienta la aritmética. Permite calcular cuántos números primos hay por debajo de un número concreto, y revela que los primos están determinados por la llamada función zeta.

5. Teorema fundamental del cálculo

Une dos ideas principales: el concepto de integración y el concepto de derivada. Afirma que el cambio neto de una cantidad continua (como la distancia recorrida al viajar) durante un periodo determinado de tiempo (la diferencia entre la hora de salida y la de llegada del viaje) es igual a la integran del ratio de cambio de esa cantidad (en este caso, la integran de la velocidad).

6. Ecuación de onda

Se utiliza para describir cómo se propagan las ondas. Su relación con el sonido sirve para explicar cómo oyen nuestros oídos y por qué algunas combinaciones de sonido nos resultan agradables y otras chirriantes.

7. Teorema de Bayes

Desarrollada por Thomas Bayes en el siglo XVIII, calcula cuál es la probabilidad de que un evento (A) sea cierto si otro evento relacionado (B) lo es. Sirve por tanto para revisar probabilidades ya calculadas cuando se tiene información nueva y para la toma de decisiones.

8. Ecuaciones del campo de Einstein

Introdujo la idea de que el tejido del espacio-tiempo es maleable y eso lo que origina la gravedad. Las ecuaciones de Einstein permite saber cómo ha cambiado el universo con el tiempo y echar un vistazo a sus primeros momentos de vida. Han servido para predecir la existencia de los agujeros negros y de las ondas gravitacionales recientemente confirmadas, así como para inferir que el universo se expande.

9. Ecuación de Dirac

Formulada por el físico británico Paul Dirac en 1920 y es utilizada por el papel que jugó en el desarrollo de la física durante el siglo XX. Conectó dos importantes conceptos físicos: el de la mecánica cuántica, que describe el comportamiento de los objetos a muy pequeña escala, y el de la teoría especial de la relatividad de Einstein, que analiza cómo se comportan los objetos que se mueven a gran velocidad.

10. Modelo estándar

Recoge el conjunto de partículas fundamentales de las que está hecho todo cuanto nos rodea, y cómo se relacionan entre sí. Es una forma resumida de describir el comportamiento de todas las partículas elementales y las fuerzas observadas en el laboratorio hasta la fecha, a excepción de la gravedad.

Fuente:

http://www.elconfidencial.com/tecnologia/2016-03-12/las-diez-ecuaciones-mas-bellas-de-la-historia-de-las-matematicas_1167436/

A %d blogueros les gusta esto: