• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    La Guía de Matemátic… en La Guía de Matemáticas cumple…
    Los Juegos Panameric… en Los Juegos Panamericanos, una…
    Manuel Mora Morales en La UNAM celebra este sábado 13…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a otros 113 seguidores

  • Anuncios

Luca Pacioli, el amigo matemático de Da Vinci amante de la divina proporción

Se acaba de cumplir el V Centenario de la muerte de Leonardo da Vinci, muy reconocido en todas las áreas que tocó.

Su amigo Luca Pacioli es mucho más desconocido, pero ocupa un lugar importante en la historia de las matemáticas.

Aún algunos recuerdan la tabla de doble entrada o libro de balance, con su «debe» y su «haber: gastos en una columna e ingresos en la otra. Los más jóvenes conocen la evolución de esa tabla de doble entrada: la hoja de cálculo.

En 1494 publicó su libro Summa de arithmetica, geometria, proportioni et proportionalita, en el que describe esa tabla de doble entrada. Esa obra puede perfectamente considerarse como un libro de texto y él mismo dice que ha reflejado en él ideas de grandes matemáticos como Euclides, Boecio, Sacrobosco y Fibonacci.

Tuvo una tirada de 2.000 ejemplares y posteriormente se tradujo y copió por toda Europa. Una de las copias llegó a las manos de Leonardo Da Vinci, que en ese momento trabajaba en Milán, en la corte de Ludovico Sforza, y pensó que los conocimientos de Pacioli se podrían aplicar muy bien en la ciudad.

Ambos colaboraron en bastantes proyectos, pero queremos destacar tres de ellos: los libros De divina proportione, De Viribus quantitatis y De ludo scacchorum.

El primero de ellos, cuyo título traducido podría ser algo así como «Sobre la divina proporción», se inspiró en las discusiones sobre la aplicación de las matemáticas y la ciencias naturales al arte que surgían en la corte de Sforza. Trata sobre el número Φ, también conocido como razón áurea, un número que proviene de la división de un extremo en dos partes de modo que la mayor sea a la menor como el todo a la parte mayor.

La divina proporción se formularía así:

Ese número verifica que es solución de la ecuación:

Otra de las aficiones compartidas por Luca y Leonardo dio lugar al libro Sobre el juego del ajedrez, que en 2006 apareció escondido entre otros 22000 volúmenes en la biblioteca del Palazzo Coronini Cronberg.

El tercero de los trabajos comunes al que nos vamos a referir se podría traducir como Sobre el poder de los números, en el que aparece la primera descripción escrita de un juego de magia con cartas y que puede considerarse como el primer texto de matemática recreativa que existe: además de juegos de magia en él aparecen problemas de ingenio, acertijos y retos de lógica.

Leer más:

https://www.abc.es/ciencia/abci-luca-pacioli-amigo-matematico-vinci-amante-divina-proporcion-201905270139_noticia.html

Anuncios

Omar Khayyam, el genio matemático, astrónomo y poeta homenajeado por Google en su aniversario

Omar Khayyam nació el 18 de mayo de 1048, pero su legado ha sido tan importante que su figura sigue siendo recordada 971 años después de aquel día. Fue un matemático, astrónomo y poeta persa que dejó aportes de enorme trascendencia en estos campos.

Creció entre Nishapur (Irán) y Balj (Afganistán) y se formó con una fuerte influencia en ciencias y filosofía. También vivió en Samarcanda (Uzbekistan), donde elaboró su Tesis sobre Demostraciones de Álgebra y Comparación con la que logró reconocimiento y prestigio.

Sus investigaciones en astronomía fueron de fundamental importancia. En especial la corrección que realizó al antiguo calendario zoroástrico.

Para el nuevo calendario, este genio de las matemáticas calculó la duración del año con una exactitud llamativa. Su error margen de error es de un día en 3770 años, menor aún que el del calendario gregoriano.

También logró cambiar el mundo de los números matemáticos y a través de su trabajo descubrió el concepto de las fracciones como un campo numérico con propiedades más amplias que el campo de los números naturales.

También cultivó la poesía. Destacan los Rubaiyat, recopilación de unos mil cuartetos que hablan sobre la naturaleza y el ser humano.

Fuente:

https://www.clarin.com/sociedad/omar-khayyam-genio-matematico-astronomo-poeta-homenajeado-google-aniversario_0_Hf_bJrb9t.html

El científico que da nombre al ‘Nobel de las Matemáticas’

Niels H. Abel, el matemático noruego más importante de todos los tiempos, murió hace 190 años un 6 de abril, con 26 años. Aunque apenas fue reconocido en vida, obtuvo grandes logros en el campo de las funciones abelianas y demostró el ahora conocido como teorema de la imposibilidad de Abel.

Para la ecuación general de segundo grado ax²+bx+c=0, existe esta fórmula. La aprenden de memoria todos los escolares y viene dada por:

El científico que da nombre al ‘Nobel de las Matemáticas’

Ya en el Renacimiento se sabía cómo resolver mediante radicales las ecuaciones de grados 3 y 4. Sin embargo, durante años, todos los intentos para resolver la ecuación general de quinto grado fracasaron.

En 1825 Abel logró una beca para poder visitar otras ciudades europeas y ampliar sus contactos con otros matemáticos.

En Berlín conoció a August L. Crelle, un ingeniero fascinado por las matemáticas. Su interés por la ciencia lo llevó a fundar en 1826 la “Revista de Crelle”, la primera revista matemática que no provenía de una academia.

En su visita a París fue recibido fríamente, y no pudo publicar ningún artículo, ni siquiera uno de sus mejores resultados, la llamada “Memoria de París”, donde sentaba las bases del teorema de Abel-Jacobi.

En mayo de 1827 volvió a Noruega enfermo y arruinado. Murió de tuberculosis el 6 de abril de 1829.

Dos días después, llegó a Noruega una carta que le comunicaba que había conseguido una plaza en la Universidad de Berlín. Por esas fechas, la Academia de Ciencias francesa encontró “la Memoria de París” y decidió conceder el Gran Premio de Matemáticas de la Academia de Ciencias de París a Abel y al matemático alemán Karl G. Jacobi.

En honor a Abel varios términos matemáticos llevan su nombre: por ejemplo, grupos abelianos o funciones abelianas. Además, el gobierno noruego instituyó el Premio Abel en 2002, bicentenario de su nacimiento.

Leer más:

https://elpais.com/elpais/2019/04/29/ciencia/1556547925_193829.html

Cómo las matemáticas ayudaron a China a crear un imperio

Los primeros pasos de las matemáticas se dieron en las antiguas culturas de Egipto, Mesopotamia y Grecia. Pero después, China tuvo un papel destacado en este sentido.

La Gran Muralla China tomó casi 2.000 años de construcción desde que se inició en 220 a.C. para proteger el imperio.

Para su planificación, los chinos tuvieron que realizar cálculos sobre distancias, ángulos de elevación y cantidades de material.

Su sistema numérico era muy simple: para hacer una suma se utilizaban pequeñas cañas de bambú. Las barras estaban dispuestas para representar los números, del 1 al 9. Después se colocaron en columnas, de forma que cada una representaba unidades, decenas, cientos, miles y así sucesivamente.

Esto es un sistema de valor posicional decimal, muy similar al que empleamos hoy.

En líneas generales, en la antigua China había una gran fascinación por los números.

A los antiguos chinos les atraían los patrones en números y crearon una versión temprana del sudoku: el llamado cuadrado mágico.

Las matemáticas también tuvieron un papel fundamental en la corte del emperador. El calendario y el movimiento de los planetas eran para él muy importantes e influían en todas sus decisiones. Los astrónomos se convirtieron en miembros muy valorados de la corte imperial.

En lo que respecta al funcionamiento del Estado, las matemáticas fueron asimismo esenciales. El Imperio Chino tenía un estricto código legal y una compleja burocracia. Para educar a los funcionarios había un libro de texto, escrito hacia el año 200 a.C. Los nueve capítulos sobre el arte matemático.

Mucho después, en el siglo XIII, había más de 30 escuelas de matemáticas repartidas por todo el país. Fue en esa época cuando surgió la figura de Qin Jiushao.

Leer más:

https://www.elmostrador.cl/cultura/2019/02/10/como-las-matematicas-ayudaron-a-china-a-crear-un-imperio/

Una serie de animación acerca los grandes hitos históricos de las matemáticas a los jóvenes

El Instituto de Ciencias Matemáticas (Icmat) ha lanzado Revoluciones matemáticas, una serie de animación que presenta de forma divulgativa los momentos históricos y los protagonistas de los grandes hitos matemáticos.

Tiene cinco episodios de alrededor de tres minutos de duración y está especialmente dirigido a los jóvenes.

Los dos primeros vídeos ya pueden verse en el canal de YouTube del instituto: el primero introduce el concepto de “revolución matemática” y el segundo está dedicado a Teano, matemática y filósofa griega de la comunidad de Pitágoras.

Otros matemáticos como Al-Juarismi, Isaac Newton o Kurt Gödel protagonizarán los siguientes capítulos.

El proyecto fue seleccionado en la primera edición de la convocatoria de ayudas para favorecer la cultura científica “Cuenta la Ciencia”, de Fundación General CSIC, y cuenta con la financiación del proyecto Severo Ochoa del Icmat. También colaboran la empresa Divermates y la animadora Irene López.

Fuente:

https://www.eleconomista.es/ecoaula/noticias/9543275/11/18/Una-serie-de-animacion-acerca-los-grandes-hitos-historicos-de-las-matematicas-a-los-jovenes.html

Otra geometría es posible

La geometría es la parte de la matemática que estudia las propiedades métricas de las figuras en el plano o en el espacio. Desde los tiempos de Euclides (siglo III a.C.) se habían estudiado las propiedades geométricas de las figuras planas y espaciales, dando por hecho que se encuentran contenidas en el espacio ambiente.

La observación hecha por Gauss en 1827 de que la geometría intrínseca de una superficie depende exclusivamente de la manera de medir en la superficie supuso un punto de inflexión. Su descubrimiento implicaba que sería posible imaginar una geometría, al menos en dimensión dos, sin necesidad de depender del espacio ambiente euclídeo. Su discípulo Riemann (1826-1866) lo demostró en su tesis de habilitación, presentada en la Universidad de Gotinga en 1854. Extendió a dimensiones establecidas la geometría que Gauss había desarrollado para superficies de dimensión dos y marcó el nacimiento de la geometría riemanniana.

Con la teoría de la relatividad de Einstein (1915) se consideró la posibilidad de métricas lorentzianas. Esta teoría se basa en que el universo se modela en términos de una variedad de dimensión cuatro, llamada espaciotiempo, en la que hay tres dimensiones espaciales y una dimensión temporal que interactúan entre sí.

Fuente:

http://www.laverdad.es/ababol/ciencia/geometria-posible-20171204004306-ntvo.html#

 

 

Más allá de Alan Turing: los matemáticos que combatieron el nazismo

1507887388_277386_1507888217_noticia_normal_recorte1

Durante la Segunda Guerra Mundial muchos matemáticos se integraron en el Ejército Aliado, especialmente en el Reino Unido. El gobierno de Winston Churchill creó grupos de trabajo en centros y laboratorios, dedicados a campos de la ciencia prioritarios para la batalla.

Alan Turing es el más famoso de los matemáticos británicos involucrados en la Segunda Guerra Mundial, pues descifró el código de comunicación secreta de los nazis, sentando las bases del uso de ordenadores para resolver problemas al utilizar una secuencia de pasos lógicos. Su colaboradora Joan Clarke fue una de las pocas mujeres matemáticas que se involucró desde el principio en la guerra.

Más allá de la criptografía, hubo matemáticos dedicados al estudio de material militar. En Kent, Nevill Francis Mott, premio Nobel de Física en 1977, dirigió un grupo en el que estaban Leslie Howarth, dedicado a la mecánica de fluidos, Ian Sneddon y Rodney Hill, especializados en sólidos, y James Hardy Wilkinson, experto en análisis numérico. Allí se estudió el primer misil balístico del mundo (el V-2), construido por los nazis y lanzado por primera vez en 1944.

Después guerra, estos matemáticos regresaron al mundo académico. Rodney Hill comenzó su doctorado en Cambridge en 1946, y lo finalizó dos años después. Publicó dos artículos, uno en 1948 y otro en el 1950, que crean los fundamentos de la llamada teoría de la plasticidad dentro de la termodinámica. Su director de tesis, Egon Orowan, había llegado a Reino Unido en 1937 huyendo de los nazis, y también trabajó al servicio del gobierno inglés durante la guerra. En 1944, sus estudios identificaron la causa de la rotura de los llamados barcos de la libertad (Liberty ships), que eran enviados desde Estados Unidos para abastecer con todo tipo de material a los aliados en Europa.

Otro grupo de investigadores del Reino Unido, bajo la dirección de Patrick Blackett, que sería también Nobel de Física, logró mejoras en el uso de radar aéreo para localizar los submarinos alemanes entre 1942 y 1945. Sus trabajos dieron nacimiento a la investigación operativa, que consiste en el uso de modelos y datos estadísticos para tomar decisiones.

Leer más:

https://elpais.com/elpais/2017/10/13/ciencia/1507887388_277386.html

 

A %d blogueros les gusta esto: