• Logo Biblioteca de la Universidad de Sevilla
  • Páginas

  • Categorías

  • RSS GME RSS

    • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
  • Archivo de MATBUS

  • Comentarios recientes

    Danza y matemáticas… en Danza y matemáticas
    eformacionic en “LaLiga Santander Explic…
    Universidad Nacional… en Universidad Nacional de Costa…
  • Escribe tu dirección de correo electrónico para suscribirte a este blog, y recibir notificaciones de nuevos mensajes por correo.

    Únete a 127 seguidores más

Las matemáticas de Leonardo

Es posible que uno de los iconos de la cultura occidental sea El hombre de Vitrubio (1490) de Leonardo da Vinci (1452-1519). En un hoja de sus diarios, el dibujo resuelve el problema renacentista de inscribir a la vez a un hombre en un cuadrado y en un círculo, sin distorsionar sus proporciones.

En conjunto, El hombre de Vitrubio es la expresión pura del Renacimiento, el hombre como medida de la naturaleza, una figura en reposo y en movimiento a la vez.

La opinión de los historiadores sobre la capacidad matemática de Leonardo no es unánime. Uno de ellos, István Stefan Fenyö afirma que Leonardo no solo era un entusiasta aficionado, sino que también tenía un excelente talento matemático.

En 1497, en la corte de Ludovico Sforza, duque de Milán, se produjo el encuentro entre el monje franciscano Luca Pacioli (1445-1517) y Leonardo. Pacioli había publicado tres años antes su obra Summa de arithmetica geometria proportioni e proportionalita, considerada la primera enciclopedia de matemática pura y aplicada.

Pacioli era un excelente profesor de matemáticas. La colaboración y amistad entre los dos genios dio como resultado que Leonardo realizara las 60 ilustraciones de los sólidos regulares en perspectiva para la siguiente obra de Pacioli, De divina proportione. En esta obra se presenta la proporción áurea, que fue empleada por Leonardo en algunas de sus obras más famosas, como La Dama del Armiño (1490), El hombre de Vitrubio o la propia Gioconda (1517).

Como científico y artista, Leonardo tenía una gran visión espacial y geométrica. Se cree que pensaba en imágenes. Así, para resolver un problema matemático, su principal arma era la geometría. El problema matemático más famoso al que se enfrentó fue la cuadratura del círculo: dado un círculo de radio la unidad, constrúyase un cuadrado de igual área, utilizando la regla y el compás.

A la muerte de Leonardo, se publica El tratado de la pintura, que contiene la siguiente reflexión: “Ninguna investigación humana se puede demostrar verdadera ciencia, si ella no pasa por las demostraciones matemáticas”.

Fuente:

https://www.heraldo.es/noticias/sociedad/2020/03/16/leonardo-y-las-matematicas-ciencia-arte-1363901.html

Las matemáticas de la relatividad

La Relatividad Especial es la teoría que creó Albert Einstein en 1905 para solucionar la crisis debida a las incompatibilidades entre la mecánica de Newton y la electrodinámica de Maxwell. Su formalización geométrica, usando unas matemáticas básicas, fue realizada por H. Minkowski en 1908.

Einstein presentó en 1915 una nueva teoría de gravitación: la Relatividad General. Su genialidad le llevó a la conclusión de que un campo gravitatorio produce una deformación del espacio-tiempo.

En lenguaje matemático, los espacios-tiempos curvados son variedades de Riemann. La distorsión se manifiesta a través de la curvatura de la variedad y las trayectorias de los objetos bajo la influencia del campo gravitatorio son geodésicas de dichos espacios.

Einstein desconocía la geometría necesaria para estudiar estos espacios curvados. Se introdujo en los trabajos de B. Riemann, G. Ricci y T. Civita sobre Geometría Diferencial de Variedades y Cálculo Tensorial, donde encontró las matemáticas que le permitieron formalizar su Teoría de la Relatividad General.

Fuente:

https://www.eldia.es/sociedad/2020/02/10/matematicas-relatividad/1049438.html

Luca Pacioli, el amigo matemático de Da Vinci amante de la divina proporción

Se acaba de cumplir el V Centenario de la muerte de Leonardo da Vinci, muy reconocido en todas las áreas que tocó.

Su amigo Luca Pacioli es mucho más desconocido, pero ocupa un lugar importante en la historia de las matemáticas.

Aún algunos recuerdan la tabla de doble entrada o libro de balance, con su «debe» y su «haber: gastos en una columna e ingresos en la otra. Los más jóvenes conocen la evolución de esa tabla de doble entrada: la hoja de cálculo.

En 1494 publicó su libro Summa de arithmetica, geometria, proportioni et proportionalita, en el que describe esa tabla de doble entrada. Esa obra puede perfectamente considerarse como un libro de texto y él mismo dice que ha reflejado en él ideas de grandes matemáticos como Euclides, Boecio, Sacrobosco y Fibonacci.

Tuvo una tirada de 2.000 ejemplares y posteriormente se tradujo y copió por toda Europa. Una de las copias llegó a las manos de Leonardo Da Vinci, que en ese momento trabajaba en Milán, en la corte de Ludovico Sforza, y pensó que los conocimientos de Pacioli se podrían aplicar muy bien en la ciudad.

Ambos colaboraron en bastantes proyectos, pero queremos destacar tres de ellos: los libros De divina proportione, De Viribus quantitatis y De ludo scacchorum.

El primero de ellos, cuyo título traducido podría ser algo así como «Sobre la divina proporción», se inspiró en las discusiones sobre la aplicación de las matemáticas y la ciencias naturales al arte que surgían en la corte de Sforza. Trata sobre el número Φ, también conocido como razón áurea, un número que proviene de la división de un extremo en dos partes de modo que la mayor sea a la menor como el todo a la parte mayor.

La divina proporción se formularía así:

Ese número verifica que es solución de la ecuación:

Otra de las aficiones compartidas por Luca y Leonardo dio lugar al libro Sobre el juego del ajedrez, que en 2006 apareció escondido entre otros 22000 volúmenes en la biblioteca del Palazzo Coronini Cronberg.

El tercero de los trabajos comunes al que nos vamos a referir se podría traducir como Sobre el poder de los números, en el que aparece la primera descripción escrita de un juego de magia con cartas y que puede considerarse como el primer texto de matemática recreativa que existe: además de juegos de magia en él aparecen problemas de ingenio, acertijos y retos de lógica.

Leer más:

https://www.abc.es/ciencia/abci-luca-pacioli-amigo-matematico-vinci-amante-divina-proporcion-201905270139_noticia.html

Omar Khayyam, el genio matemático, astrónomo y poeta homenajeado por Google en su aniversario

Omar Khayyam nació el 18 de mayo de 1048, pero su legado ha sido tan importante que su figura sigue siendo recordada 971 años después de aquel día. Fue un matemático, astrónomo y poeta persa que dejó aportes de enorme trascendencia en estos campos.

Creció entre Nishapur (Irán) y Balj (Afganistán) y se formó con una fuerte influencia en ciencias y filosofía. También vivió en Samarcanda (Uzbekistan), donde elaboró su Tesis sobre Demostraciones de Álgebra y Comparación con la que logró reconocimiento y prestigio.

Sus investigaciones en astronomía fueron de fundamental importancia. En especial la corrección que realizó al antiguo calendario zoroástrico.

Para el nuevo calendario, este genio de las matemáticas calculó la duración del año con una exactitud llamativa. Su error margen de error es de un día en 3770 años, menor aún que el del calendario gregoriano.

También logró cambiar el mundo de los números matemáticos y a través de su trabajo descubrió el concepto de las fracciones como un campo numérico con propiedades más amplias que el campo de los números naturales.

También cultivó la poesía. Destacan los Rubaiyat, recopilación de unos mil cuartetos que hablan sobre la naturaleza y el ser humano.

Fuente:

https://www.clarin.com/sociedad/omar-khayyam-genio-matematico-astronomo-poeta-homenajeado-google-aniversario_0_Hf_bJrb9t.html

El científico que da nombre al ‘Nobel de las Matemáticas’

Niels H. Abel, el matemático noruego más importante de todos los tiempos, murió hace 190 años un 6 de abril, con 26 años. Aunque apenas fue reconocido en vida, obtuvo grandes logros en el campo de las funciones abelianas y demostró el ahora conocido como teorema de la imposibilidad de Abel.

Para la ecuación general de segundo grado ax²+bx+c=0, existe esta fórmula. La aprenden de memoria todos los escolares y viene dada por:

El científico que da nombre al ‘Nobel de las Matemáticas’

Ya en el Renacimiento se sabía cómo resolver mediante radicales las ecuaciones de grados 3 y 4. Sin embargo, durante años, todos los intentos para resolver la ecuación general de quinto grado fracasaron.

En 1825 Abel logró una beca para poder visitar otras ciudades europeas y ampliar sus contactos con otros matemáticos.

En Berlín conoció a August L. Crelle, un ingeniero fascinado por las matemáticas. Su interés por la ciencia lo llevó a fundar en 1826 la “Revista de Crelle”, la primera revista matemática que no provenía de una academia.

En su visita a París fue recibido fríamente, y no pudo publicar ningún artículo, ni siquiera uno de sus mejores resultados, la llamada “Memoria de París”, donde sentaba las bases del teorema de Abel-Jacobi.

En mayo de 1827 volvió a Noruega enfermo y arruinado. Murió de tuberculosis el 6 de abril de 1829.

Dos días después, llegó a Noruega una carta que le comunicaba que había conseguido una plaza en la Universidad de Berlín. Por esas fechas, la Academia de Ciencias francesa encontró “la Memoria de París” y decidió conceder el Gran Premio de Matemáticas de la Academia de Ciencias de París a Abel y al matemático alemán Karl G. Jacobi.

En honor a Abel varios términos matemáticos llevan su nombre: por ejemplo, grupos abelianos o funciones abelianas. Además, el gobierno noruego instituyó el Premio Abel en 2002, bicentenario de su nacimiento.

Leer más:

https://elpais.com/elpais/2019/04/29/ciencia/1556547925_193829.html

Cómo las matemáticas ayudaron a China a crear un imperio

Los primeros pasos de las matemáticas se dieron en las antiguas culturas de Egipto, Mesopotamia y Grecia. Pero después, China tuvo un papel destacado en este sentido.

La Gran Muralla China tomó casi 2.000 años de construcción desde que se inició en 220 a.C. para proteger el imperio.

Para su planificación, los chinos tuvieron que realizar cálculos sobre distancias, ángulos de elevación y cantidades de material.

Su sistema numérico era muy simple: para hacer una suma se utilizaban pequeñas cañas de bambú. Las barras estaban dispuestas para representar los números, del 1 al 9. Después se colocaron en columnas, de forma que cada una representaba unidades, decenas, cientos, miles y así sucesivamente.

Esto es un sistema de valor posicional decimal, muy similar al que empleamos hoy.

En líneas generales, en la antigua China había una gran fascinación por los números.

A los antiguos chinos les atraían los patrones en números y crearon una versión temprana del sudoku: el llamado cuadrado mágico.

Las matemáticas también tuvieron un papel fundamental en la corte del emperador. El calendario y el movimiento de los planetas eran para él muy importantes e influían en todas sus decisiones. Los astrónomos se convirtieron en miembros muy valorados de la corte imperial.

En lo que respecta al funcionamiento del Estado, las matemáticas fueron asimismo esenciales. El Imperio Chino tenía un estricto código legal y una compleja burocracia. Para educar a los funcionarios había un libro de texto, escrito hacia el año 200 a.C. Los nueve capítulos sobre el arte matemático.

Mucho después, en el siglo XIII, había más de 30 escuelas de matemáticas repartidas por todo el país. Fue en esa época cuando surgió la figura de Qin Jiushao.

Leer más:

https://www.elmostrador.cl/cultura/2019/02/10/como-las-matematicas-ayudaron-a-china-a-crear-un-imperio/

Una serie de animación acerca los grandes hitos históricos de las matemáticas a los jóvenes

El Instituto de Ciencias Matemáticas (Icmat) ha lanzado Revoluciones matemáticas, una serie de animación que presenta de forma divulgativa los momentos históricos y los protagonistas de los grandes hitos matemáticos.

Tiene cinco episodios de alrededor de tres minutos de duración y está especialmente dirigido a los jóvenes.

Los dos primeros vídeos ya pueden verse en el canal de YouTube del instituto: el primero introduce el concepto de “revolución matemática” y el segundo está dedicado a Teano, matemática y filósofa griega de la comunidad de Pitágoras.

Otros matemáticos como Al-Juarismi, Isaac Newton o Kurt Gödel protagonizarán los siguientes capítulos.

El proyecto fue seleccionado en la primera edición de la convocatoria de ayudas para favorecer la cultura científica “Cuenta la Ciencia”, de Fundación General CSIC, y cuenta con la financiación del proyecto Severo Ochoa del Icmat. También colaboran la empresa Divermates y la animadora Irene López.

Fuente:

https://www.eleconomista.es/ecoaula/noticias/9543275/11/18/Una-serie-de-animacion-acerca-los-grandes-hitos-historicos-de-las-matematicas-a-los-jovenes.html

A %d blogueros les gusta esto: